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Experimental observation of characteristic relations of type-III intermittency in the presence
of noise in a simple electronic circuit
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We investigate the characteristic relations of type-II and -III intermittencies in the presence of noise. The
theoretically predicted characteristic relation is that^,&;exp$ueu2% for a negative regime ofe and^,&;e2n for
the positive regime ofe (1/2<n,1), where^,& is the average laminar length and~11e) is the slope of the
local Poincare´ map around the tangent point. We experimentally confirm these relations in a simple electronic
circuit.
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I. INTRODUCTION

Intermittency is one of the main routes of the transition
chaos in nonlinear dynamical systems along with period d
bling, quasiperiodicity, and crises. The phenomenon is c
acterized by the irregular changes between long quasireg
signals, so-called laminar phase, and relatively short pe
of chaotic bursts.

According to Pomeau and Manneville, intermittency c
be classified into three types@1#, depending on their loca
geometry of the manifolds~local Poincare´ map!: type-I in-
termittency for quadratic structures and type-II and -III inte
mittencies for cubic ones. They showed that the length of
laminar,, which is defined as the time interval between t
bursts, depends on the initial value, and the average lam
length ^,& is a statistical quantity that depends on the lo
Poincare´ map as well as reinjection probability distributio
~RPD! @2#. Since noise is unavoidable in nature, the interm
tency with noise is of fundamental importance in the pra
cal application of many topics in science. Eckmann, Thom
and Wittwer @3# studied intermittency analytically with
added noise in the neighborhood of the intermittency thre
old. Even though they treated the problem rigorously, th
only considered quadratic local structures of manifolds, i
type-I intermittency, with a positive channel widthd ~which
is defined as the distance between the quadratic manifold
the diagonal line!. The recent study has explicitly shown th
the characteristic relation of type-I intermittency with add
noise changes nontrivially as the parameterd changes from
the positive to negative@4#; namely, it is deformed from
^,&}d21/2 to ^,&}exp$ud u3/2%. Very recently, this relation ha
been experimentally confirmed in electronic circuits@5#.

In contrast that many researches on the study of typ
intermittency have been done so far, those of type-II and
intermittencies are rarely studied in spite of the importan
of their local geometry of the manifolds, especially in t
presence of noise@6,7#. Pikovsky obtained the characterist
relation of type-II intermittency with added noise in the for
of power series by the use of Fokker-Planck equation~FPE!
under the assumption of a symmetrical mapping and unifo
RPD @8#. The relations arê,&} 1

2 e21/2 for e@0 and ^,&
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2ueu2% for e!0, where (11e) is the slope of

the local Poincare´ map around the tangent point. Up to no
however, there is no experimental investigation of the ch
acteristic relations of type-II and -III intermittencies in th
presence of noise.

In this paper, we experimentally investigate the charac
istic relations of the average laminar length near the thre
old of type-II and -III intermittencies in the presence
noise. The paper is organized as follows. In Sec. II, the ch
acteristic relations for positive and negativee are reviewed
and derived analytically. Two different approaches are
plied for the cases of positive and negativee. While the
consideration of positivee is straightforward, negativee is
considered by using the FPE. In addition, we discuss R
which is another important factor to determine the charac
istic relations of type-II and -III intermittencies@2,9#. In Sec.
III the description of the experimental setup, which is
simple inductor-resistor-diode~LRD! circuit, is presented. In
Sec. IV, the experimental results and discussions are
sented. Finally, the main results of the paper are summar
in Sec. V.

II. THEORETICAL ANALYSIS

The local Poincare´ maps of type-II and -III intermittencies
in the presence of noise are described by the following w
known difference equation@1,8,10#:

xn1156~11e!xn6axn
31A2Djn , ~1!

wherea is the positive arbitrary constant,e is the parameter,
andD is the dispersion of Gaussian noisejn . The signs of
linear and cubic terms inx correspond to type-II intermit-
tency for the plus and type-III intermittency for the minu
respectively. Since the local Poincare´ map of type-III inter-
mittency can be described the same as that of type-II in
mittency, it is quite enough to discuss the characteristic re
tion of type II without loss of generality.

The characteristic relations can be obtained for two ca
depending on the sign ofe, where (11e) is the slope of the
local Poincare´ map. They correspond toe.0 ande,0 as
shown in Fig. 1. For 0,D!e, noise effect can be neglecte
©2003 The American Physical Society03-1
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since the slope mainly contributes to the characteristic r
tion. So the characteristic relation can be obtained by solv
the equation of a general form of type-II intermitten
xn115(11e)xn1axn

3 ; whereas fore,0, Eq. ~1! can be
transformed into a differential form to solve FPE.

A. Characteristic relation for eÌ0

When we neglect the effect of noise for 0,D!e, the
characteristic relation of type-II intermittency can be o
tained by integratingdx/dt5ax31ex, wheredx/dt'xn11
2xn under the long laminar length approximation. If we gi
a gate which sets an acceptanceuyinu<c on deviations in the
laminar region, the laminar length,(yin ,c) for the reinjec-
tion at yin becomes

,~yin ,c!5E
yin

c dx

ax31ex
5

1

2e F2lnS c

yin
D2 lnS ac21e

ayin
2 1e

D G .

Then, the average laminar length is given as follows:

^,&5E
D

c

,~yin ,c! P~yin!dyin ,

whereD is the value ofyin representing the lower bound o
the reinjection.

From the above equation, we can obtain various cha
teristic relations according to the RPD that is given
P(yin). When the lower bound of reinjection is fixed ne
the tangent point, we can obtain the characteristic relatio
the form^,&}e21 ase→0. For the uniform reinjection, we
can obtain the characteristic relation of the form^,&}e21/2

as e→0; and for the nonuniform reinjection of the form
1/Ayin2D, the characteristic relation iŝ,&}e23/4 as e
→0. It is evident from these results that the characteri
relation strongly depends on the RPD for 0,D!e, even if
noise is applied.

FIG. 1. Schematic relation between the return map and the
tential from a mechanical analogy where~a! e,0 and ~b! e.0.
Fixed points of the return map correspond to extremal position
the potential.
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B. Characteristic relation for eË0

In the absence of noise and fore,0, the return map of
Eq. ~1! has one stable fixed point at the origin and two u
stable fixed points. A trajectory is attracted to the stable fix
point, and the system never shows intermittent behavi
However, added noise changes the situation drastically s
the particle can escape from the well. In this case, we
calculate the average laminar length for a given noise am
tude. So, the problem becomes nontrivial. We are interes
in the characteristic relations depending on the RPD.

In the long laminar region, Eq.~1! can be approximated to
a stochastic differential equation as follows@11#:

ẋ52V8~x!1A2Dj~ t !, ~2!

where the dot and the prime denote the differentiation w
respect tot and x, respectively. Herej(t) is the Gaussian
white noisesuch that^j(t8)j(t)&5d(t82t) and ^j(t)&50
@12#, and V(x) is the potential given byV(x)52 1

2 ex2

2 1
4 ax41C, whereC is the integration constant. We can r

gard the above equation as the equation of motion of a m
less point particle under the potentialV(x) with Gaussian
random perturbationj(t).

We can convert the stochastic differential equation in
the FPE type. Then, the scaling of the average laminar len
can be estimated by the solution of the FPE. It is often
quired to know how long a particle whose position is d
scribed by a FPE remains in a certain region ofx. The solu-
tion of this problem can be obtained by the use ofbackward
Fokker-Planck equations@11,12#.

]G~x,t !

]t
52V8~x!

]G~x,t !

]x
1D

]2G~x,t !

]x2
, ~3!

whereG(x,t) is the probability density of a particle at$x,t%.
The mean first passage time~MFPT! function T(x)5^t&5
2*0

`t@]G(x,t)/]t#dt is defined as the average transitio
time from the reinjection to the escaping pointx due to the
backward property under the potentialV(x) and random per-
turbation. In this case, the MFPT functionT(x) can be ap-
proximated as follows@11,12#:

2152V8~x!
dT

dx
1D

d2T

dx2
, ~4!

where we have used boundary conditionsG(x0 ,0)51 and
lim

t→`
G(x,t)50; hereG(x0,0)51 implies that the initial

particle position isx0. The MFPT functionT(x) is the aver-
age transition time fromx0 to the escaping pointx under the
potentialV(x) and random perturbation.

One can verify easily that the solution of Eq.~4! is given
by the expression

T~x!5c1E
xl

x

dx8expH 1

D
V~x8!J

2
1

DE
xl

x

dx8E
xl

x8
dx9expH 1

D
@V~x8!2V~x9!#J , ~5!

o-
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wherec1 is the integration constant,xl is the lower bound
of the laminar phase, andx is the destination point of the
transition.

If noise is small enough, that is,D!1, the first term in
the above equation is suppressed by the factor of 1/D and the
second term becomes dominant. Since the second term i
integrable analytically, we expand the potential near the
tremal pointx6 ~see Fig.1! approximately such thatV(x)
'V(x6)1@V9(x6)/2#(x2x6)21O„(x2x6)3

….
In that case, the MFPT functionT(x) can be approxi-

mated fore!0 as follows:

T~x!'2
1

D
expH 1

D
@V~x1!2V~x2!#J

3E
xl

x

dx8E
xl

x8
dx9 expH 1

2D
@V9~x1!~x82x1!2

2V9~x2!~x92x2!2#J . ~6!

The extremal points are given byx15A2e/a andx250 in
Eq. ~2!. We can perform the integration of the quadratic e
ponent@12# and then obtain the following approximated s
lution of the MFPT equation, as we take the limitx→` and
xl!x2 :

uT~x!u;
A2p

ueu
expH ueu2

4aDJ , e,0. ~7!

Therefore,uT(x)u;exp(e 2/4aD) for e!0.

C. Characteristic relations for uniform reinjection

So far, our calculation is done withfixed RPD, i.e.,
P(xin)5d(xin2D). ~In all of our simulations we set the
reinjection point atD50.) The RPDP(xin) is also an im-
portant factor which affects the scaling relation of the av
age laminar length. Now, we consider theuniformRPD case.
The equation of average laminar length^,&, which is the
average time interval between the bursts@13,14#, can be
given by the equation below, generically:

^,&5E
xl

xu
dx8P~x8! ,~x8!, ~8!

where the lower bound reinjection point isxl , the upper
bound isxu , and,(x8) is the laminar length reinjected atx8.
RPD,P(x8), is normalized as*xl

xudx8P(x8)51. UsingT(x),

average laminar length under consideration of RPD is gi
approximately by the following equation:

^,&5u T~0!u2^,&A ,

^,&A5D21E
0

A

dx8P~x8!E
0

x8
dxef (x)/DE

0

x

dy e2 f (y)/D,

~9!
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not
x-

-

-

n

whereuT(0)u is the average transition time from the injectio
point x50, f (x) a potential nearV(x1), and f (y) a poten-
tial nearV(x250) in Fig. 1. We can therefore expandf (y)
asV(x) in the vicinity of x50. If the reinjection is uniform,
we can giveP(x8)51/A, whereA is the available region of
reinjection. If we take the limitA→`, the exponential terms
will go to zero faster than any other growing terms. The
fore average laminar length in uniform RPD reads

^,&;uT~0!u5^,&F , e,0, ~10!

where the subscriptF means reinjection of fixed point atx
50. Equation~10! shows that in the negative region ofe,
the average laminar lengths obtained by uniform RPD a
that of fixed RPD are the same.

III. EXPERIMENTAL SETUP

The schematic diagram of the experimental setup
shown in Fig. 2. The circuit consists of two inductors, ea
of which has inductance 100 mH and dc resistance 130V,
and two silicon junction diodes~1N4007!. A dc voltage in
the range between610 V from a digital-analog~DA! con-
verter ~National Instruments PCI-MIO-16E-1! is reduced to
1/100 with a voltage divider, and the reduced voltage
added to another21.0 V dc voltage. Sinusoidal signals from
a function generator~Tektronix, FG 501A! is multiplied by
the total dc voltage with a multiplier~MPY100!. The fre-
quency and the amplitude of the sinusoidal signals are fi
at 18.0 kHz and 3.0 V, respectively. We add 0.5 V bias vo
age and random noise signals from a random signal gen
tor ~HP 33120A! to the total sinusoidal signals. The amp
tude of noise is fixed at 0.1 V. The total signals are applied
LRD circuit. All the external signals are added by using o
erational amplifiers~LF353!. Through this configuration, we
can vary the amplitude of the driving signal precisely by 0.
mV at each step by the help of a 12-bit resolution DA co
verter.

The voltage across the second diode, D2, is stored
personal computer through an analog-digital~AD! converter
that is installed in the same board as the DA converter. T
AD converter, of which digitizing time is 8msec, can mea-
sure the experimental data without distortion. The AD a

FIG. 2. Schematic diagram of experimental setup where D
and ADC are digital-analog converter and analog-digital conver
respectively. The control signal comes from the DAC.
3-3
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DA converters are controlled with theLABVIEW program.
The obtained data are also analyzed with theLABVIEW pro-
gram. The chaotic outputs and intermittent behaviors
monitored with a digital storage oscilloscope~LeCroy 9310!
simultaneously, of which sampling time is 0.5 nsec and
memory size is 2 Mbyte.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The circuit exhibits various nonlinear dynamical beha
iors due to the nonlinear capacitance of the junction in
diodes@15#. First, we have obtained a bifurcation diagra
depending on the amplitude of the driving signal after
noise signal is turned off. The amplitude of the driving sign
is controlled with a computer through the DA converter.
obtain the data, we measure the peak voltages of 500 cy
at each input voltage of the DA converter with theLABVIEW

program. In the bifurcation diagram, since the detecting v
age of the AD converter is less than 10.0 V, the volta
higher than 10.0 V is omitted. The bifurcation diagram
shown in Fig. 3. Here we can observe period-doubling bif
cation, chaos, and periodic windows as we increase the v
age from the DA converter. We can also observe typical te
poral behaviors of type-III intermittency when the volta
from the DA converter is around zero~the amplitude of the
driving signal is around 3.0 V!. The inset is the enlarge
bifurcation diagram near the region of type-III intermittenc
This figure shows that the chaotic band transits to a perio
window, and the maximum amplitude of the signal dro
from 7.2 V to 2.8 V.

The temporal behaviors of the circuit are shown in Fi
4~a! and 4~b! which correspond to the voltage of the D
converter of20.012 V and20.010 V, respectively. In the
figures, almost regular rectified signals across the diode
interrupted irregularly by chaotic bursts. When the voltage
the DA converter is20.012 V the circuit exhibits short pe
riods of regular rectified signals whose amplitude is ab
2.8 V. On the other hand, it exhibits long period of regu

FIG. 3. Bifurcation diagram in the absence of noise according
the voltage from the DA converter in the region from 1.0 V to22.0
V. The region corresponds to the range of the amplitude of
driving signal from 0.0 V to 9.0 V. The inset is the enlarged regi
where type-III intermittency appears.
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signals for20.010 V. Notice that longer laminar phases a
pear as the amplitude of the driving signal reduces.

From the time series of the data, we obtain thexn versus
xn12 return map as shown in Fig. 5~a! when the voltage of
the DA converter is20.012 V. Although the return map
crosses the diagonal line, it is hard to find the local Poinc´
map of type-III intermittency,xn1152(11e)xn2xn

3 . So,
we obtain the return map ofxn versusxn14 as shown in Fig.
5~b!. The figure shows the feature of type-II intermittenc
The return map is well fitted by the cubic curve of form (
10.1)x1x3 when we translate the map to the tangent po
i.e., x22.8 where the tangent point is about 2.8 V. Based
this observation, we can conclude that the return map of
5~a! implies the local Poincare´ map of type-III intermittency.

In order to obtain the characteristic relation of type-
intermittency with added noise, we first determine the bif
cation pointVt from the bifurcation diagram of the inset i
Fig. 3 by searching the last point where chaotic burst
pears. The determined bifurcation point from the DA co
verter isVt528.5 mV. Noise of amplitude 0.1 V is adde
to the circuit~see Fig. 2!. This noise isd correlated and has
a Gaussian profile@5#. Furthermore, we experimentall

o

e

FIG. 4. Temporal behaviors of type-III intermittency in th
absence of noise for~a! 20.012 V and~b! 20.010 V of the DA
converter.

FIG. 5. Return maps of~a! xn vs xn12 and~b! xn vs xn14 when
the voltage of the DA converter is20.012 V. ~b! Typical local
Poincare´ map of type-II intermittency.
3-4
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found that RPD is almost uniform around the tange
point @5#. The uniform tendency of RPD could depend on t
profiles of external noise and the overlapping of reinjectio
from left and right sides due to the global structure of t
map. We measure the average laminar length dependin
the voltage from the DA converter. In this experiment, w
increase the dc voltage from the DA converter by 0.01 mV
each step for a fine tuning. As the voltage from the D
converter increases from negative voltage, the length of
laminar is measured by counting the peaks of regular sign
In this way, we are able to measure the laminar length u
1.23105, which is the limit of computer memory, by usin
the LABVIEW program.

Figure 6 shows the characteristic relations for two regio
Vt2V,0 (e,0) andVt2V.0 (e.0). Fore,0, the plot
of ln(ln^,&2ln^,0&) versus lnuVt2Vu is well fitted to the slope
of 2 as shown in Fig. 6~a!. Here, we obtain they interception
of ln^,0& that is 3.7 from linear regression of the curve a

FIG. 6. The characteristic relations of the average lami
length vsuV2Vtu in the presence of 0.1 V noise~a! for e,0 and~b!
for e.0, whereC is they interception of ln̂l0& that is 3.7.
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pearing on the plot of ln̂,& versusuVt2Vu2. It means that
the characteristic relation obtained in the experiment agr
well with the theoretical one, i.e.,̂,&}^,0&exp(auV2Vtu2).
We also obtain the slope of the average laminar length
e.0 on the plot of ln̂,& versus ln(Vt2V) as shown in Fig.
6~b!. The slope of the experimental data is well fitted to t
21/2 slope of the solid line. This means that the charac
istic relation is^,&}e21/2 for V!Vt . This is the very char-
acteristic relation of type-III intermittency for 0,D!e
when RPD is uniform. This is well matched with the the
retical result of Sec. II. These results indicate that the ch
acteristic relation deforms from̂,&}e21/2 for e@0 to ^,&
}^,0&exp(aueu2) for e,0.

V. CONCLUSION

For a positivee and the uniform RPD, the theoreticall
predicted characteristic relations of type-II and -III interm
tencies with added noise have the form^,&;e21/2. How-
ever, the relation deforms as parametere moves to the nega
tive regime. Then, the characteristic relation becomes^,&
;exp (ueu2/4aD). From the electronic circiut experiment, w
have obtained that the characteristic relation is^,&}e21/2 for
e.0 and^,&}expueu2 for e,0. These results show that ou
experimental observations are in good agreement with
theoretical predictions for type-II and -III intermittencies
the presence of noise.
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